国产精品白丝啪啪91-国产精品亚洲精品日韩已满-极品少妇露出大乳高潮-欧美日韩大陆精品视频

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產(chǎn)品(AEC-Q100/Q101)

74HC191DB

Presettable synchronous 4-bit binary up/down counter

The 74HC191 is an asynchronously presettable 4-bit binary up/down counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. Asynchronous parallel load capability permits the counter to be preset to any desired value. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs when the parallel load (PL) input is LOW. This operation overrides the counting function. Counting is inhibited by a HIGH level on the count enable (CE) input. When CE is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (U/D) input signal determines the direction of counting as indicated in the function table. The CE input may go LOW when the clock is in either state, however, the LOW-to-HIGH CE transition must occur only when the clock is HIGH. Also, the U/D input should be changed only when either CE or CP is HIGH. Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock (RC). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches '15' in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until U/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the RC output. When TC is HIGH and CE is LOW, the RC output follows the clock pulse (CP). This feature simplifies the design of multistage counters as shown in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH on CE inhibits the RC output pulse. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications. Figure 2 shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the RC output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock. In Figure 3, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own CE signal therefore the simple inhibit scheme of Figure 1 and Figure 2 does not apply. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC.

此產(chǎn)品已停產(chǎn)

Features and benefits

  • Wide supply voltage range from 2.0 to 6.0 V

  • CMOS low power dissipation

  • High noise immunity

  • Latch-up performance exceeds 100 mA per JESD 78 Class II Level B

  • CMOS input levels

  • Synchronous reversible counting

  • Asynchronous parallel load

  • Count enable control for synchronous expansion

  • Single up/down control input

  • Complies with JEDEC standards:

    • JESD8C (2.7 V to 3.6 V)

    • JESD7A (2.0 V to 6.0 V)

  • ESD protection:

    • HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V

    • CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V

  • Specified from -40 °C to +85 °C and -40 °C to +125 °C

封裝

下表中的所有產(chǎn)品型號均已停產(chǎn) 。

型號 可訂購的器件編號,(訂購碼(12NC)) 狀態(tài) 標示 封裝 外形圖 回流焊/波峰焊 包裝
74HC191DB 74HC191DB,112
(935188600112)
Obsolete no package information

環(huán)境信息

下表中的所有產(chǎn)品型號均已停產(chǎn) 。

型號 可訂購的器件編號 化學成分 RoHS RHF指示符
74HC191DB 74HC191DB,112 74HC191DB rohs rhf rhf
品質(zhì)及可靠性免責聲明

文檔 (3)

文件名稱 標題 類型 日期
74HC191 Presettable synchronous 4-bit binary up/down counter Data sheet 2024-03-14
AN11044 Pin FMEA 74HC/74HCT family Application note 2019-01-09
HCT_USER_GUIDE HC/T User Guide User manual 1997-10-31

支持

如果您需要設計/技術支持,請告知我們并填寫 應答表 我們會盡快回復您。


Longevity

The Nexperia Longevity Program is aimed to provide our customers information from time to time about the expected time that our products can be ordered. The NLP is reviewed and updated regularly by our Executive Management Team. View our longevity program here.


模型

No documents available

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.

日韩亚洲天堂视频免费观看| 妞干网精品视频在线观看| 中文字幕一区二区人妻秘书| 日本女优在线中文字幕| 伊人久久亚洲精品综合| 91亚洲一区二区三区视频| 午夜精品人妻一区二区| 国产精品熟女一区二区三区不卡| 中文字幕在线日韩精品| 在线观看免费不卡网站| 久久精品熟女亚洲av麻豆网站| 一区二区日韩国产精品| 亚洲日本一区二区高清在线| 亚洲免费网站视频在线| 天堂成人国产精品一区| 精品久久国产线看观看| 91熟女成人精品一区二区| 日本免费人成在线网站| 麻豆成人在线观看视频| 熟妇一区二区在线播放| 一本色道久久综合婷婷日韩| 日韩av在线免费播放| 亚洲女人淫片在线观看| 久久国产精品亚洲综合| av专区一区二区三区| 成人福利视频一区二区| 国产免费av剧情演绎| 日韩精品亚洲专区在线观看| 亚洲精品午夜在线观看| 日本午夜免费一区二区| 久久精品亚洲一区亚洲二区| 熟妇久久人妻中文字幕| 少妇人妻偷人精品视蜜桃av| 亚洲一级在线观看国语对白| 91蜜桃传媒一二三区| 国产黄色片网站在线观看| 日韩中文字幕人成在线| 精品蜜桃在线观看一区二区三区| 台湾网红偷拍一区二区视频| 日韩精品视频在线观看无| 亚洲人妻精品免费视频|